Microbiological Hydroxylation. Part XVII.¹ C-19 Hydroxylation of 17-Oxo-5 α -androstanes and 17-Oxo-3 α ,5-cyclo-5 α -androstanes by the Fungus *Calonectria decora*

By (Mrs.) Virginia E. M. Chambers, William A. Denny, Sir Ewart R. H. Jones, G. Denis Meakins,* John O. Miners, John T.Pinhey, and Alistair L. Wilkins, Dyson Perrins Laboratory, Oxford University, South Parks Road, Oxford OX1 3QY

The sequence of microbiological reactions involved in the 19-hydroxylation of 5α -androstan-17-one has been established. When a solution of 5α -androstan-17-one in dimethyl sulphoxide is incubated with *Calonectria decora*, the initial 1 β , 6α -dihydroxylation is followed by oxidation of the 1 β -hydroxy-group and then by hydroxylation at C-19 to give 6α , 19-dihydroxy- 5α -androstane-1,17-dione in 36% yield. This compound is readily transformed (by chemical methods) into 5α , 10 β -estrane-1,6,17-trione.

C-19 hydroxylation occurs also with certain substituted 17-oxo-5 α -androstanes and 17-oxo-3 α ,5-cyclo-5 α -androstanes.

In the systematic study of the modification of 5α androstane monoketones with the fungus *Calonectria decora* hydroxylation of the 17-ketone was found to lead cleanly to one product.² Thus, when an ethanolic solution of 5α -androstan-17-one was incubated with a culture of the micro-organism for 2 days, the 1β , 6α dihydroxy-17-ketone formed was almost free from contamination by other hydroxylation products. The more detailed investigation reported here was prompted by the observation that an increase in the incubation time, or the use of dimethyl sulphoxide for introducing the steroid, leads to more extensive hydroxylation. The formation of one of the products (see later) involves attack on the angular methyl group at position 10.

¹ Part XVI, J. M. Evans, Sir Ewart R. H. Jones, G. D. Meakins, J. O. Miners, A. Pendlebury, and A. L. Wilkins, preceding paper.

paper.
² A. M. Bell, P. C. Cherry, I. M. Clark, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins, and P. D. Woodgate, *J.C.S. Perkin I*, 1972, 1081.

Since C-19 hydroxylation is an uncommon microbiological reaction in general,³ and unprecedented with *Calonectria decora*, a range of suitable substrates was studied in order to examine the scope of this hydroxylation.

Table 1 shows the substrates incubated with *C. decora* and the products formed. The Scheme portrays the hydroxylation of 5α -androstan-17-one, the parent substrate, and related chemical transformations. 1β , 6α -Dihydroxy- 5α -androstan-17-one (II) and the 6α -hydroxy-1,17-diketone (III), which were also used as substrates, were obtained by appropriate incubations of the 17ketone (I). 5α -Androstane-1,17-dione (VIII) and the Δ^2 -analogue were prepared from the commercially available 17 β -hydroxy-3-ketone (V) as shown in the Scheme. Routes from 3β -hydroxyandrost-5-en-17-one to all but

³ Inter alia, W. Charney and H. L. Herzog, 'Microbial Transformations of Steroids,' Academic Press, New York, 1967, the most comprehensive of many reviews.

one of the 3,5-cyclo-substrates have been described elsewhere; 4-6 the last one, 6a, 11a-dihydroxy-3a, 5-cyclo- 5α -androstan-17-one, was obtained by hydroxylating the 6α -hydroxy- 3α , 5-cyclo-17-ketone (Table 1).

As usual, the structures of new compounds follow from chemical relationships and spectrometric examinations. androstane series, since the normally additive effects of oxygenated substituents at C-2 and C-6 are modified by the proximity of the cyclopropane ring. The simplest approach, developed by considering literature values for 2- and 6-substituted 3α , 5-cyclocholestanes ⁷ and results of recent work,⁶ is to treat the ' 3α , 5-cyclo + nearby

TABLE 1

Hydroxylation of 17-oxo-5α-androstane and 17-oxo-3α,5-cyclo-5α-androstane derivatives by Calonectria decora

 5α -Androstane $3\alpha, 5$ -Cyclo- 5α -androstane

Substrates indicated by abbreviated names or symbols, e.g. 3α , 5-cyclo- 6α , 11α -(OH)₂-17-CO represents 6α , 11α -dihydroxy- 3α , 5-cyclo-5α-androstan-17-one. In the products column those oxygen functions introduced during incubations are in bold type. The entries under conditions refer to the use of ethanol (E) and dimethyl sulphoxide (D) as solvents for the substrate, and to the time of incubation (in days). The yields are calculated after making allowance for recovered starting material.

		Substrate						
Substrate	Conditions	recovered	Main	n product(s)		Othe	r product(s)	
17-CO	El	75%	1 β, 6 α-	(OH),	15%			
	$\mathbf{E2}$	32	1 β, 6 α-	(OH),	4 0 ´	1 -CO- 6 α,	19 -(OH).	3%
						1 -CO– 6 α-	(OH	2
	E4	11	1 β, 6 α-	$(OH)_2$	36	1- CO- 6 α,	19 -(OH) ₂	8
						1 -CO- 6 α-	OH	1.5
	D4	5	1- CO- 6 α,	19 -(OH) ₂	38	1 -CO 6 α-	OH	1.5
						1 β, 6 α-	(OH) ₂	16
$17-CO-\Delta^2$	$\mathbf{E2}$	12	1 -CO- 6 α-	OH	52	1 -CO- 6 α,	19 -(OH) ₂	6
	E4	5	1 -CO- 6 α-	OH	31	1 -CO- 6 α,	19 -(OH) ₂	18
	D4	0	1 -CO -6 α-	OH	29	1- CO- 6 α,	19 -(OH) ₂	24
$1\beta, 6\alpha-(OH)_2-17-CO$	D4	40	1-CO-	19 - OH	36	1-CO		29
	D4 *	9	1-CO-	19 - OH	56	1-CO		24
1,17-(CO) ₂	${ m E2}$	15	6 α-	OH	33	6 α,	19 -(OH) ₂	25
	$\mathbf{D2}$	0	6α,	19 -(OH) ₂	34	6 α-	OH	16
$1,17-(CO)_2-\Delta^2$	$\mathbf{D2}$	0	6 α-	OH	54	6 α,	19 -(OH) ₂	17
6α -OH-1,17-(CO) ₂	${ m E2}$	40		19 - OH	26			
	D2	6		19 - OH	29			
3a.5-cvclo-17-CO	E4	33	2 α. 6 β-	(OH),	26	11 α, 1	5 α- (OH),	7
3a.5-cvclo-6a-OH-17-CO	D4	8	11 α-	`OH´	44		19 -`OH´	5
- , , ,						11 α,	19 -(OH),	13
$3\alpha, 5$ -cyclo-6 β -OH-17-CO	E4	15	11 α-	OH	50		· /-	
			2α-	OH	32			
3α , 5-cyclo- 6α , 11 α -(OH) ₂ -17-CO	D4	35		19 - OH	24			
$3\alpha, 5$ -cyclo-6, 17-(CO),	$\mathbf{D2}$	6	$11\alpha, 13$	$5\alpha - (OH)_2$	12	11 α-	OH	8
							19 - OH	8
						1	5 α- ΟΗ	7
						2 α-	OH	4
	E4	5	$11\alpha, 18$	5α- (OH) ₂	15	1	5 α- OH	10
						11 α-	OH	9
							19 - OH	9
						2α-	OH	6

* Incubation in the presence of 5α -androstan-17-one as enzyme inducer.

With some of the oxygenated 3,5-cyclo-derivatives, calculation of the positions of the angular methyl groups' n.m.r. signals by using the standard shift values leads to unacceptable discrepancies. Moreover, it is not possible to ascribe invariable shift values to the 3α , 5-cyclo-unit, and then to use the shift values computed for the 5α -

4 A. Kasal, V. Cerny, and F. Sorm, Coll. Czech. Chem. Comm., 1965, 30, 472.

⁵ S. Julia, C. Neuville, and M. Davis, Bull. Soc. chim. France, 1960. 297.

⁶ Sir Ewart R. H. Jones, G. D. Meakins, J. Pragnell, W. E. Müller, and A. L. Wilkins, J.C.S. Perkin I, 1974, 2376. ⁷ V. Cerny, A. Kasal, and F. Sorm, Coll. Czech. Chem. Comm.,

1970, **35**, 1235.

oxygen ' system as a single unit whose shift values (Table 2) include the contributions of both components; for substituents in rings C and D the standard values^{8,9} can then be used in calculating the positions of the 18-H and 19-H resonances. Table 3 lists the n.m.r. signals of compounds for which spectrometric data have not appeared in earlier publications: the arabic serial

A. M. Bell, I. M. Clark, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins, W. E. Müller, and E. E. Richards, J.C.S. Perkin I, 1973, 2131.

1360

⁸ J. E. Bridgeman, P. C. Cherry, A. S. Clegg, J. M. Evans, Sir Ewart R. H. Jones, A. Kasal, V. Kumar, G. D. Meakins, Y. Morisawa, E. E. Richards, and P. D. Woodgate, *J. Chem. Soc.* (C), 1969, 250.

number sequence of steroids discussed earlier is used in this Table, which contains steroids nos. 790—829. The n.m.r. signals of new compounds appear in Table 3, and the other information required for their characterisation is given in Table 4. Since little of the work involves more than the routine operation of techniques fully described in earlier parts, most of the experimental details work establishes the details of this process for 5α androstan-17-one (I) with *C. decora*: it involves the sequence (I) \longrightarrow (II) \longrightarrow (III) \longrightarrow (IV). This result, and the successful C-19 hydroxylation of 5α -androstane-1,17-dione (VIII), show that the presence of a 1-oxogroup (either present in the substrate, or introduced during the incubation) is essential for the attack on the

SCHEME Work on 17-0x0-5*a*-androstanes

References to known compounds are given in the Experimental section; new compounds are marked with an asterisk

Reagents: i, C. decora (see Table 1); ii, Br₂-AcOH; iii, Li₂CO₃-LiCl-DMF, reflux; iv, H₂O₂-NaOH; v, N₂H₄, heat; vi, H₂CrO₄-Me₂CO; vii, H₂-Pd; viii, BDN-DMF, reflux; ix, KOH-EtOH; x, Huang-Minlon reduction

 \dagger The other product was 17 β -hydroxyandrost-4-en-3-one (31%). \ddagger See Experimental section for configurations at positions 5 and 10.

are available only in supplementary Publication No.-SUP 21364 (12 pp., 1 microfiche).* However, the formation and transformations of 6α ,19-dihydroxy- 5α -androstane-1,17-dione (IV) are sufficiently novel to warrant description in the Experimental section.

C-19 hydroxylation is the key process in the biotransformation ¹⁰ of androgens into estrogens. The present

* For details of Supplementary Publications see Notice to Authors No. 7 in J.C.S. Perkin I, 1974, Index issue.

angular methyl group of these substrates. 5α -Androst-2-en-17-one and the Δ^2 -1,17-diketone undergo processes similar to those of the saturated analogues; as expected the olefinic bond of the Δ^2 -17-ketone substrate facilitates oxidation of the 1 β -hydroxy-group in the (presumed) initial dihydroxylated product.

¹⁰ (a) J. E. Longchampt, C. Gual, M. Ehrenstein, and R. I. Dorfman, *Endocrinology*, 1960, **66**, **416**; (b) M. Akhtar and S. J. M. Skinner, *Biochem. J.*, 1968, **109**, 318.

In contrast, the presence of a 3,5-cyclo-unit in the 17ketone substrates leads to much less selective hydroxylations in which attack may occur at positions 2, 6, 11, 15, and 19. Significantly, no 1-hydroxylation is observed.

TABLE 2

The effect of substituents $[\Delta \tau_2(\text{CDCl}_3)]$ on 19-H and 18-H signals. A positive $\Delta \tau_2$ value indicates a shift to higher field.

Substituent		
5a,14a-Steroids	19-H	18-H
3α,5-cyclo	-0.14	-0.02
$2\alpha, 6\beta$ -(OH) ₂ - $3\alpha, 5$ -cyclo *	-0.30	-0.08
2α -OH-6-CO- 3α , 5-cyclo *	-0.23	-0.01
$2,6-(CO)_2-3\alpha,5-cyclo*†$	-0.40	-0.09
6α-OH-3α,5-cyclo	-0.12	-0.04
6β-OH-3α,5-cyclo	-0.30	-0.02
6-CO-3α,5-cyclo	-0.54	-0.08

* Based on one or two examples only. † A similar value can be calculated in the cholestane series; see ref. 7.

(It was considered necessary to support the structures of the products, as deduced from their spectra, by chemical evidence. Accordingly, the major product from 3α , 5cyclo- 5α -androstan-17-one, formulated as a 2.6-dihydroxy-compound, was oxidised and then hydrogenated to the known 5α -androstane-2,6,17-trione.) It may be that the altered geometry of the substrate brings the enzyme sites normally responsible for 1,6-dihydroxylation into contact with the 2- and 6-positions, but in a manner less favourable for attack, and this would allow other hydroxylations (at the 11- and 15-positions) to compete or supervene. In general the extent of 19hydroxylation is much reduced with the 3,5-cycloandrostanes. The best yield is obtained with an 11α hydroxy-17-ketone; in such circumstances the 11α hydroxy-group appears to facilitate substitution of the angular C-10 methyl group.

With the 6α -hydroxy-1,17-dioxo- 5α -estranes [obtained, see Scheme, by the reversed aldol reaction of the 19hydroxy-1-oxo-functionality of the dihydroxy-diketone (IV)] the structures assigned from the expected greater stability of the 10β H-isomer (XI) were confirmed by marked deshielding of the 18-protons by the 1-oxo-group in 10α H-isomer (XII). Mild oxidation of the 10β compound (XI) gave a trione for which the 5α , 10β structure (X) was established by n.m.r. solvent shift studies. On treatment with alkali this trione appeared to be partially converted into an isomer (presumably ¹¹ the 5β , 10β -compound, which would represent the more stable arrangement of a 55,105-1,6-dioxoestrane system). Although this isomerisation was not studied in detail, its occurrence to some extent during the Huang-Minlon reduction of the triketone (X) is probable; the constants

¹¹ J. E. Bridgeman, P. C. Cherry, W. R. T. Cottrell, Sir Ewart R. H. Jones, P. W. Le Quesne, and G. D. Meakins, *Chem. Comm.*, 1966, 561.

¹² R. E. Counsell, J. Medicin. Chem., 1966, 9, 263.
 ¹³ J. W. Blunt, I. M. Clark, J. M. Evans, Sir Ewart R. H. Jones, G. D. Meakins, and J. T. Pinhey, J. Chem. Soc. (C), 1971, 1136.

of the resulting hydrocarbon material are consistent ¹² with its being a mixture of 5α - and 5β -estrane.

EXPERIMENTAL

For general directions see refs. 2, 6, and 13. For the n.m.r. signals and the other constants of new compounds, see Tables 3 and 4. The constants (m.p., $[\alpha]_n$) of known compounds are not given if the values found here correspond closely with those in the literature references cited. Cd refers to Calonectria decora.

6α, 19-Dihydroxy-5α-androstane-1, 17-dione (IV).-Preparation. Incubation of 5*a*-androstan-17-one² (I) (no. 20) * with Cd; 4.0 g in Me₂SO (400 ml), 100 flasks, medium B, 4d, extraction I \longrightarrow 1.05 g, mycelial extract and 3.9 g broth extract. Chromat. of the mycelial extract on Al₂O₃ (5% deactivated, 50 g) and elution with petrol-EtOAc (4:1) gave s.m. (200 mg). Chromat. of the broth extract on Al_2O_3 (5% deactivated, 150 g) and elution with petrol-EtOAc (2:1) gave material (120 mg) separated by p.l.c. [3 small plates, CH_2Cl_2 -Me₂CO-EtOH (16:2:1)] into 1 β , 6 α dihydroxy-5a-androstan-17-one (II) (no. 235)* (68 mg), and 6α-hydroxy-5α-androstane-1,17-dione (III) (no. 801) (68 mg), v_{max} 3600, 1745, and 1714 cm⁻¹. Elution with petrol-EtOAc (1:1) gave further 1β , 6α -dihydroxy- 5α -androstan-17-one (I) (606 mg). Elution with EtOAc gave 6α , 19 $dihydroxy-5\alpha$ -androstane-1,17-dione (IV) (no. 804) (1.68 g), $v_{\text{max.}}$ (Nujol) 3440, 1738, and 1690 cm⁻¹.

TABLE 3

N.m.r. signals

The results, presented in the form used earlier, " were obtained by examining solutions in CDCl₃ at 100 MHz

No. Compound			τ_2	(calc.)	CH-OH etc.		
50	x-Androstanes						
790	5α-Androst-2-en-17-one	19	9.22	9.21	H-2	14.49	6
		18	9.13	9.12	H-3	<u>}</u>	8
791	5α-Androstane-1,17-dione	19	8.83	8.82			
700	E. A. Jacob O and 1 17 diana	18	9.14	9.12	11.0	4.15	4 (10 5)
192	5a-Androst-2-ene-1,17-dioite	19	0.12	0.10	п-2 H-9	2.25	a (10.5 6 9)
793	5q-Androst-2-ene-1 6 17-trione	19	8.92	8.91	H-2	4.15	d (10)
,,,,		18	9.10	9.07	H-3	3.24	8 (10, 6, 2)
794	5B-Androst-2-ene-1,6,17-trione	19	8.90	8.90	H-2	3.97	d (10)
		18	9.12	9.12	H-3	3.19	m`(18)
795	17,17-Ethylenedioxyandrost-	19	8.97	8.97	H-3	6.51	m (21)
	5-en-3β-ol				H-6	4.52	d (5)
	15 15 10 10 11 11 11 11 11	18	9.13	9.13	Aceta	6.14	S (10 10 - F)
796	17,17-Ethylenedioxyandrost-	19	9.00	9.00	H-3	0.04 4.54	7(10, 10, 5, 5)
	A-sulphonate	18	0.14	9.14	п-0	4.94	u (0)
797	17-Oxo-5g-androstan-38-vl	19	9.20	9.19	H-3	5.60	7 (10 10 5 5)
	toluene-4-sulphonate	18	9.16	9.14		0.00	/ (10, 10, 0, 0, 0)
798	2a-Bromo-178-hydroxy-5a-	19	8.90		H-2	$5 \cdot 24$	4 (13, 6)
	androstan-3-one	18	9.24		H-17	6.35	t (8)
799	1α,2α-Epoxy-17β-hydroxy-	19	9.10	9.12	H-1	6.48	d (4)
	5α-androstan-3-one	10			H-2	6.88	d (4)
000		18	9.23	9.24	H-17	6.33	$t_{1}(8)$
800	17B-Hydroxy-5α-androst-	19	8.98	8.99	H-I	4.10	d (10)
	1-en-5-one	18	9.94	0.94	H-17	6.34	$\frac{1}{10}$
801	6a-Hydroxy-5a-androstane-	19	8.82	8.79	H-6	6.42	6 (11 11 4)
•••	1.17-dione	18	9.13	9.12		•	• (,,-)-/
802	6α-Hydroxy-5α-androst-2-	19	8.91	8.90	H-6	6.35	6 (11, 11, 4)
	ene-1,17-dione				H-2	4.15	4 (10, 2)
		18	9.11	9·1 0	H-3	3.22	$\delta(10, 6, 2)$
803	5α-Androst-2-ene-1α,17β-diol	19	9.28	9.28	H-1	6.28	м (10)
004	e. 10 Dibudeour for	18	9.26	9.25	H-17	6.48	t(8)
804	androstane-1 17-dione	10	9.10		п-о н_1о	(5.79)	0 (11, 11, 4)
	androstane-1,17-dione				11-10	$\{6.04\}$	4 'AB (12)
805	6a,19-Diacetoxy-5a-	18	9.12		H-6	5.24	6 (10, 10, 5)
	androstane-1,17-dione				H-19	5.45}	4 AB / (11)
						ે્ર્ડ∙53}	4 AD (II)
806	6α,19-Dihydroxy-5α-androst-	18	9.09		H-6	}6·1 0	m (14)
	2-ene-1,17-ulone				H-2	J 4.10	d (10)
					H-3	3.13	m(16)
807	6a.19-Diacetoxy-5a-androst-	18	9.10		H-6	5.02	6 (11, 11, 4)
	2-ene-1,17-dione				H-19	$\{5.59\}$	4 ' AB ' (11)
					цo	(0.75)	4 (10)
					H-2	3.20	8 (10 6 2)
					11-0	0.40	∪ (±∪, ∪, <i>µ</i>)

TABLE	3	(Continued)
TUDLE		Conconco

				τ_{g}			
No.	Compound		τ_2	(calc.)		>CH-	OH etc.
3α,5	-Cyclo-δα-androstanes						
808	3a.5-Cyclo-5a-androstan-	19	9.08	9.06			
	17-one	18	9.10	9.09			
809	17.17-Ethylenedioxy-3a.5-	19	8.97	8.98	Acetal	6.15	s
	cyclo-5\alpha-androstan-6-one	18	9.09	9.09			
809	17,17-Ethylenedioxy-3a,5-	19	8.97	8.98	Acetal	6.15	s
	$cyclo-5\alpha$ -androstan-6-one	18	9.09	9.09			
810	3α,5-Cyclo-5α-androstane-	19	8.80	8.80			
	2,6,17-trione	18	9.05	9.05			
811	6α-Hydroxy-3α,5-cyclo-5α-	19	9.04	9.05	H-6	6.06	4 (10, 5)
	androstan-17-one	18	9.10	9.10			
812	17,17-Ethylenedioxy-3α,5-	19	9.07	9.07	H-6	6.06	4 (10, 5)
	cyclo-5α-androstan-6α-ol	18	9.12	9.13	Acetal	6.15	S
813	17,17-Ethylenedioxy-3α,5-	19	8.94	8.92	H-6	6-65	t (3)
	$cyclo-5\alpha$ -androstan-6 β -ol	18	9.10	9.12	Acetal	6.14	s
814	2a-Hydroxy-3a,5-cyclo-5a-	19	8.97	8.97	H-2	5.73	d (5)
	androstane-6,17-dione	18	9.07	9.07			
815	11a-Hydroxy-3a,5-cyclo-5a-	19	8.83	8.84	H-11	5.90	6 (10 , 1 0 , 5)
	androstane-6,17-dione	18	9.02	9.03			
816	6,17-Dioxo-3a,5-cyclo-5a-	19	8.89	8.88	H-11	4.66	6 (10, 10, 5)
	androstan-11α-yl acetate	18	8.98	8.99			
817	15a-Hydroxy-3a,5-cyclo-5a-	19	8.95	8.95	H-15	5.65	g (8)
	androstane-6,17-dione	18	9.05	9.03			
818	19-Hydroxy-3a,5-cyclo-5a-	18	9.06		H-19	∫6•15∖	(AB ! (12)
	androstane-6,17-dione					€6.63 ∫	4 110 (12)
819	2α,6β-Dihydroxy-3α,5-cyclo-	19	8.91	8.91	H-2	5.78	d (5)
	5α -androstan-17-one	18	9.06	9.06	H-6	6.60	t (3)
820	6α,11α-Dihydroxy-3α,5-cyclo-	19	8.91	8.93	H-6	36.10	m(22)
	5α-androstan-17-one	18	9.08	9.07	H-11	J	···· ()
821	6α.19-Dihydroxy-3α,5-cyclo-	18	9.06		H-19	{6·15}	4 ' AB ' (12)
000	og 11. Dibertere 2. 5 cm le	10	0.70	0.70	TT e	(0.44)	+ (2)
822	68,11a-Dinydroxy-sa, 5-cyclo-	19	0.00	0.06	п-0 111	5.95	$\binom{1}{6}\binom{3}{10}$
602	1) and ostan-17-one	10	9.09	9.00	U 11	g.05	6 (10, 10, 5)
020	Tra, 10 a-Dinyaroxy-5a, 5-cyclo-	19	0.04	0.02	T 15	5.60	a (10, 10, 5)
694	11. 15. Dibadrows 2a 5	10	8.09	9.02	U-11	6.94	6 (10 10 5)
ð24	11a,10a-Dinydroxy-5a,5-	19	0.15		П*11 U 15	5.99	0 (10, 10, 5)
	cyclo-ox-androstane-0,17-	10	9.10		п-10	0.02	Q (9)
005	Gione ·						
0-0	avala 5. and sorten 17 anal						
896	for 11or 10-Trippetory 3or 5-	18	8.00		H-6	2	
020	orgina, 13- 11 acetoxy-3a, 3-	10	0.99		H-11	}4∙90	m (23)
	Cyclosid-andiostan-11-one				H-10	6.053	
					11-10	15.80	4 ' AB ' (12)
5c	r-Estranes					(0.00)	
897	5m-Estrone-1 6 17-trione	18	0.11	0.10 +			
898	6a-Hydroyy-5a-estrane-1 17-	18	9.14	9.09 +	H-6	6.55	6 (10 10 4)
020	dione	10	0 14	0.001	11-0	0.00	· (10, 10, 1)
829	6a-Hydroxy-5a-10a-estrane-	18	8.96		H-6	6-45	6 (11, 11, 4)
520	1.17-dione					v	- (, -, 1)
	+1 (00) 00 +01						•

* In $(CD_3)_2SO$. † Calc. from values in 5α -androstane series. 4 Ref. 9.

Transformations. A solution of 6a, 19-dihydroxy-5aandrostane-1,17-dione (IV) (no. 804) (180 mg) in DMF (20 ml)-DBN (1,5-diazabicyclo[4.3.0]non-5-ene) (0.5 ml) was heated under reflux for 6 h. Work-up gave material (135 mg) separated by p.l.c. [1 large plate, $4 \times \text{Et}_2\text{O}$] into 6α hydroxy-5a,10a-estrane-1,17-dione (XII) (no. 829) (21 mg), ν_{max.} 3625, 1743, and 1713 cm⁻¹; and 6α-hydroxy-5α-estrane-1,17-dione (XI) (no. 828) (85 mg), v_{max} , 3630, 1743, and 1716 cm⁻¹.

A solution of the 5α , 10α -hydroxy-diketone (XII) (12 mg) and KOH (5 mg) in EtOH (9 ml)-H₂O (1 ml) was heated under reflux for 2 h. Work-up gave the 5α , 10β -hydroxydiketone (XI) (9 mg).

Oxidation of the 5α , 10β -hydroxy-diketone (XI) (30 mg) with 8N-H2CrO4 gave material purified by p.l.c. [1 small plate, $2 \times \text{Et}_2\text{O}$] to give 5*a*-estrane-1,6,17-trione (X) (no. 827) (21 mg), v_{max} 1712 and 1243 cm⁻¹; τ_1 9·16, τ_2 9·11, τ_3 9·48 (H-18); $\Delta_1^{3} + 0.32$, $\Delta_2^{3} + 0.37$ (calc. $\Delta_1^{3} + 0.36$, $\Delta_{2^{3}} + 0.40$ from values in androstane series ^{8, 11}).

Huang-Minlon reduction of the foregoing 5α -trione (XI) (16 mg) gave material (10 mg), which after distillation in vacuo (sublimation tube) at 60° and 5 mmHg, had m/e 258

TABLE 4

Characterisation of new compounds

Character	M = (%C)	[]	Analwaa	(0/)		
	M.p. (°C) (solvent for		Anaryses (%)			
Compound	crystallisation)	(c) *	'	С	н	
5α-Androst-2-ene-1,6,17-	144 - 146	+189	Found	75.9	$8 \cdot 1$	
trione	(Me ₂ CO-hexane)	(1.05)	$C_{19}H_{24}O_{3}$ req.	76.0	8.0	
5β-Androst-2-ene-1,6,17-	186-188	+140	Found	$76 \cdot 1$	$8 \cdot 2$	
trione	(Me ₂ CO-hexane)	(0.7)	$C_{19}H_{24}O_3$ req.	76.0	8.0	
6α-Hydroxy-5α-androstane-	239240	+210	Found	75-2	9.3	
1,17-dione	(Me ₂ CO-nexane)	(0.5)	$C_{19}H_{28}O_3$ req.	75.0	9.2	
6α-Hydroxy-5α-androst-2-	242-244	+220		75.5	8.6	
ene-1,17-dione	(Me ₂ CO-nexane)	± 195	$C_{19}\Pi_{26}O_3$ req.	71.9	8.8	
androstane-1 17-dione	(EtOAc)	(1.0)	C.H.O. ren	71.2	8.8	
6g.19-Diacetoxy-5g-	174-176	+160	Found	68.3	8 ∙0	
androstane-1.17-dione	(MeOH-H _a O)	(0.9)	C., H., O. req.	68.3	8.0	
6a,19-Dihydroxy-5a-	185—187	+205	Found	71.9	$8 \cdot 1$	
androst-2-ene-1,17-dione	(Me ₂ CO-hexane)	(0.4)	$C_{19}H_{26}O_4$ req.	71.7	8.2	
6α,19-Diacetoxy-5α-	158-160	+185	Found	68·5	$7 \cdot 7$	
androst-2-ene-1,17-dione ($(Me_2CO-hexane)$	(0.8)	$C_{23}H_{30}O_{6}$ req.	68.85	7.5	
3α,5-Cyclo-5α-androstane-	231-233.5	+28	Found	76.2	8.1	
2,6,17-trione	(Me ₂ CO-nexane)	(0.4)	$C_{19} F_{24} O_3$ req.	76.0	8.00	
2a-Hydroxy-5a,5-cyclo-5a-	213 - 214 (Mo CO, horrore)	(1.0)		75.45	8.7	
11a-Hudroxy-3a 5-ovolo-5a-	159-154	(1.0) ± 01	Eound	75.5	8.7	
androstane-6 17-dione	(Me.CO-hevane)	(1.0)	C. H. O. rea	75.45	8.7	
6.17-Dioxo-3a.5-cvclo-5a-	210-211	+15	Found	73.1	8.2	
androstan-11a-vl acetate	(MeOH)	(0.1)	C., H., O, req.	73.2	8.2	
15a-Hydroxy-3a,5-cyclo-	214 - 217	+121	Found	75.5	8.75	
5α -androstane-6,17-dione	(Me ₂ CO-hexane)	(0.1)	$C_{19}H_{26}O_3$ req.	$74 \cdot 45$	8.7	
19-Hydroxy-3a,5-cyclo-5a-	173 - 175	+135	Found	75.7	8.6	
androstane-6,17-dione	(Me ₂ CO-hexane)	(1.0)	$C_{19}H_{26}O_3$ req.	75.45	8.7	
2α,6β-Dihydroxy-3α,5-	185	+113	Found	74.7	9.2	
cyclo-5a-androstan-17- one	$(C_6H_6-hexane)$	(0.9)	$C_{19}H_{28}O_3$ req.	75.0	9.3	
6α,11α-Dihydroxy-3α,5-	181-182	+107	Found	75.1	9.3	
cyclo-5α-androstan-17-	(Me ₂ CO-hexane)	(0•45)	$C_{9}H_{28}O_{3}$ req.	75.0	9.3	
one	170 100	1 105	E anna d	74.9	$9 \cdot 2$	
60,19-Dinyaroxy-30,3-	$(M_0 CO howere)$	+100		75.0	0.2	
ope	(Me ₂ CO-nexane)	(0.00)	C19112803 104.	100		
68 11g-Dibydroxy-3g.5-	201 - 203	+76	Found	75.0	9.1	
cvclo-5a-androstan-17-	(Me ₂ CO)	(0.3)	C ₁₀ H ₂₀ O ₃ req.	75.0	9.3	
one	,	` '	10 10 0 1			
11α,15α-Dihydroxy-3α,5-	232 - 234	+172	Found	75.2	9.4	
cyclo-5α-androstan-17-	(Me ₂ CO)	(0.5)	C ₁₉ H ₂₈ O ₃ req.	75.0	9.3	
one				-1 -		
Πα,15α-Dihydroxy-3α,5-	285-290	+ 95	Found	71.7	8.2	
cyclo-ba-androstane-	(Me_2CO)	(0.7)	$C_{19}H_{26}O_4$ req.	11.1	8.2	
6 11 10 Trianotory 3rd 5-	165 168	. 95	Found	67.5	7.5	
cvelo-ja-androstan-17-	(Me.CO. hevane)	(0.25)	C. H. O. reg	67.3	7.6	
one	(megeo-nexane)	(0 20)	C25113407 104.	0.0		
5a-Estrane-1.6.17-trione	189191	+101	Found	$75 \cdot 1$	8.2	
	(Me.CO-hexane)	(0.9)	C., H., O. reg.	75.0	8.3	
6α-Hydroxy-5α-estrane-	136-138	+143	Found	74.3	8.9	
1,17-dione	(Me ₂ CO-hexane)	(1.2)	C ₁₈ H ₂₆ O ₃ req.	74.5	8.95	
6α-Hydroxy-5α,10α-estrane-						
	201-204	+80	Found	74.6	9.1	
1,17-dione	201-204 (Me ₂ CO-hexane)	$^{+80}_{(0.8)}$	Found C ₁₈ H ₂₆ O ₃ req.	74·6 74·5	$9.1 \\ 8.95$	

 (M^{\dagger}) , $[\alpha]_{\rm D}$ +17° (c 0.1) (lit.,¹² $[\alpha]_{\rm D}$ +20° for 5 α -estrane, $[\alpha]_{\rm D}$ +15° for 5 β -estrane, $[\alpha]_{\rm D}$ -15.5° for 5 α ,10 α -estrane), τ 9·29 (18-H).

We thank the S.R.C. for a studentship (to V. E. M. C.), Magdalen College, Oxford, for a Perkin Research Studentship (to A. L. W.), the University of Sydney for granting study leave (to J. T. P.), the S.R.C. for a grant, and Glaxo Research Ltd. for a grant and gifts of chemicals.

[5/069 Received, 10th January, 1975]